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Abstract

Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in
sensing and actuating devices in MEMS. In this paper the perturbation analysis of the electrostatically actuated
MEMS resonant sensors which represented by a modified Duffing - Van der Pol equation subjected to weakly
non-linear parametric and external excitations is studied by using a perturbation technique (multiple time scales).
Harmonic resonance and subharmonic resonances of order (% and %) are investigated. For each resonances we
obtain the modulation equations in the amplitude and phase, steady state solutions, frequency-response equations
and stability conditions are determined. Effects of different parameters on the system behavior are investigated
numerically. Results are presented graphically and discussion is provided.
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1. Introduction

Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy
domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism [1]. Electrostatic MEMS is
an important branch with a wide range of applications including sensing devices and actuating devices in MEMS [2].
For example, the sensing devices such as capacitive accelerometers [3] and capacitive sensors [4]. In MEMS,
electrostatic forces are often used to actuate microstructures, including switches [5, 6], electrostatic motors [7, 8],
etc. The use of electrostatic actuation in MEMS is attractive because of the quite efficient, high energy densities
and large forces available for MEMS devices in micro-scale [9].

A serious limitation on the use of these devices lies in the pull-in phenomenon [10-12], which is a structural
instability resulting from the interaction between elastic and electrostatic forces. This instability results from the
unbalance between the electric actuation and the mechanical restoring force leading the suspended microbeam to
hit the stationary electrode underneath it causing stiction and short circuit problems and hence the failure in the
devices function [13]. Keeping MEMS devices operating in a stable regime away from the pull-in instability limit
has a crucial interest from design and commercialization point of view. Various works [14, 15] investigated the
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static pull-in phenomenon and performed techniques to predict its occurrence by determining the best conditions
for which the system operate in a stable behavior. There are various methods can be used to drive MEM structures
at resonance. The most commonly used method is the primary-resonance excitation, in which the frequency of the
excitation is tuned closed to the fundamental natural frequency of the microstructure. Examples of this excitation
in MEMS can be found in various applications, such as resonant sensors [16] and RF filters [17]. Jin and Wang
[18] showed that driving a resonant microsensor with a subharmonic excitation of order one-half increased the
signal-to-crosstalk ratio as compared to driving it at primary resonance. Younis et al. [16,19] used the method of
multiple scales to study the response of an electrostatically actuated resonator to a primary resonance excitation.
Also Abdel-Rahman and Nayfeh [20] studied a superharmonic resonance excitation of order two, and a subharmonic
resonance excitation of order one-half. Furthermore, Nayfeh and Younis [21] investigated the dynamics of a MEMS
resonator to a subharmonic resonance of order one-half and to a superharmonic resonance of order two. Zhang
and Meng [22] analyzed the nonlinear dynamics of the electrostatically actuated resonant MEMS sensors under
parametric excitation. Harmonic, sub-harmonic and super-harmonic resonance of weakly non-linear dynamical
system subjected to external excitation, parametric excitation or both are investigated by Elnaggar et al. [24-27].
Batra et al. [28] and Kacem et al. [29-31] studied respectively nonlinear multi-physics models including both
mechanical and electrostatic nonlinearities and the fringing field effect. A more comprehensive review up to 2010
about the work on the non-linear dynamics of micro resonators is presented in literature [32].

Zhang et al. [22,23] approximate the electrostatic force and the squeeze film damping force in the equation of
motion by working with first and second order expansion and O(e?) term is neglected based on the small displacement
(amplitude) assumption. Also, use a combination of DC and AC voltages. The focus of this paper is actuation of
high displacement (amplitude) vibrations in MEMS using a square rooted sinusoidal AC voltage signal only, So, the
higher order expansion terms up to O(g%) for the electrostatic force and up to O(e?®) for the squeeze film damping
force are taken. This leads to the mathematical model of the equation of motion is of the type generalized modified
Duffing - Van der Pol equation subjected to weakly non-linear parametric and external excitations. In this paper
harmonic resonance and subharmonic resonances of order (% and %) are investigated by applying the method of
multiple scales. For each type of resonance we determine an approximate solution, steady-state solution, frequency
response equation and stability of the steady-state solution. Frequency response curves are plotted in which solid
curve represent stable solutions and dashed curve represent unstable solutions. Finally discussion for the figures is
given.

2. Formulation of the problem and perturbation analysis

Fig.1: The diagram of the dynamical model of the problem

The governing equation of motion for a simplified dynamic system of the micro-cantilever beam in MEMS
shown in (fig. 1) is represented by the following nonlinear second order differential equation [22]

mij + ¢+ ky + ke = Fo(y,t) + Fa(y,9) (1)

where () denotes the derivative with respect to t, y is the vertical displacement of the micro-cantilever relative to
the origin of the fixed plate, m is the mass, k and k. are the coefficients of linear and non-linear spring stiffness ,
c is the coefficient of linear damping and F; and F, are the squeeze film damping force and nonlinear electrostatic
force, respectively.
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The electrostatic force, F, between the capacitor plates (the fixed plate and the movable plate) generated by
applying a voltage V' (t), can be expressed as

A V(1)
R RCE @

where ¢g is the absolute dielectric constant of vacuum, A the overlapping area between the two plates, d is the
gap between them, and the force due to electrostatic interactions has a square dependence on the voltage applied,
in order to isolate the parametric effects from harmonic effects, we can use a square rooted sinusoidal voltage
signal V' = [Vycos(wt)]'/? [33]. Expanding the nonlinear electrostatic force F. by Taylor series with respect to the
equilibrium position, i.e., y, =0, gives

A V2(t)  @AV2t), 2 3 , 4 4 5 , 6 5 T 4
0~ _ 0 142y 2 = = el - 3
S d—pE - 2 @ A+ oy+ 5y + 5y + gy + 5y’ + 5y + ) (3)

Viscous damping of micro structures vibrating in air in the narrow gap between two electrodes is dominated by
squeeze film damping. Starr [34] presented the expression of the damping force for a rectangular plate of dimension
as

Fs(yvy) = 7<di73y)3y (4)

Expanding the squeeze film damping force F by Taylor series, yields

Cs . Cs 3 6 10 .
_Wy=—E(1+3y+ﬁy2+$y3+---)y (5)

Substituting equations (3) and (5) into equation (1),
4+ wiy + ey +elpo + p1 (14 3y + 6y% +10y*)]y — e F(2y + 3y* 4 4y + 5y* + 6y° + 7y%) cos(Qt) = eF cos(Qt) (6)

_ |k _ ked? _ ¢ ¢ _ e0AVZ
where wo =4/:", EA = T, €0 = 7, Ep = 55 and F =S

Equation (6) represents the modified Duffing - Van der Pol equation subjected to weakly non-linear parametric and
forcing excitations. Here, F' and () are the amplitude and the frequency of parametric and external excitations, pg
and p; are the coefficients of viscous linear and nonlinear damping terms, wy is the natural frequency and X is the
cubic nonlinear stiffness.

Using the method of Multiple Scales (Nayfeh [35]), we get a first order uniform solution of equation (6) in the
form

y(t;e) = yo(To, T1) + eyr (To, T1) + ..., (7)

where Ty = t is the first scale associated with changes occurring at the frequencies wg and 2, and 77 = €t is a slow
scale associated with modulations in the amplitude. In terms of T}, the time derivatives become

d d?
= =Do+eDy + ... & ) = D2 +2eDyDy + ... (8)

where D,, = 52-. Substituting equations (7) and (8) into equation (6) and equating coefficients of like powers of €
one obtains

Diyo + wgyo =0 9)

D3y +wiyr = — Mg — (ko + 1 + 3payo + 6p1yg + 10p1y3) Doyo + 2Do D1yo

2 3 4 5 6 (10)
+ F(1 4+ 2yo + 3yg + 4yg + 5yg + 6y5 + 7yg) cos(ToS))

The solution of equation (9) can be expressed in the complex form

Yo = Aeiono +A67inTO (11)
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where A is the complex conjugate of A. Then equation (10) becomes,
D02y1 —+ w%yl = — (3)\A2A -+ in(MoA + [LlA —+ 6M1A2A —+ 2A/)) 6iw0TO
1 - _ o\ s
+ F(5+ 344+ 154247 4 TOAP A ) 200
+ FA(l +6AA + 30A2A2)ei<9*w0>T0
_ _ 1 _ ]
+ FA (§ + 1044 + EAQAQ)eZ(Q_Z‘“O)TO
2 2

+ FA3 (2 + 15AA) ¢! (2= 3w0)Ty (12)

+ PA* (g + 2144 i@ ten) T

+ SFASQi(Q—5w0)TO

+ ZFA(Sei(Qwag)TO

2
+ NST. + c.c.

where NST. denotes the terms which do not produce secular terms and c.c. denotes the complex conjugate.
Equation (12) contain seven cases of resonance

Q ~ nwg in=1,2,3,4,5,6,7

In this paper we restricted our attention to three cases of resonance (harmonic resonance and subharmonic
resonances of orders (3 and ¥)).

3. Harmonic resonance (£ ~ wy)

In this section, we study harmonic resonance of the MEMS represented by equation (6). To describe the
nearness of the excitation frequency €) to the fundamental natural frequency wg i.e. Q =~ wgy, we introduce the
detuning parameter o to convert the small-divisor terms into secular terms according to

Q=wy+co (13)
Eliminating the secular terms from the equation (12) yields

—3NA2A —iwo (oA 4 1 A + 61 A2A +2A") + F(% 4+ 3AA + 15A4%2A% + 7T0A3A3)e™t = (14)
Writing A in the polar form as A = 1a(T3)e”™) into equation (14) where a(7}) and B(T;) are real-valued

functions, representing, respectively, the amplitude and phase of the response, and separating real and imaginary
parts, we obtain the following modulation equations:

1 16 + 24a® + 30a* + 35a%) Fsin
a' =—=a 2o+ (24 3a*) 1) + ( ) ®) (15)
4 32w0
3Xa® (16 + 244 + 30a* + 35a°) Fos(y)

' = ga — 16
@ =0 8wo * 32wy (16)
where v = oT7 — 3(T1).

For steady state solution, ' = +' = 0, in equations (15) and (16) we obtain
8woa (2p0 + (2 + 3a?) p1) = (16 + 24a* + 30a* + 35a°) F'sin(v) (17)

12)a® — 32wpoa = (16 + 24a® + 30a* + 35a°) F cos(7) (18)
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Equations (17) and (18) show that there are no trivial solution at a = 0. For non-trivial solution i.e. at a # 0,
eliminating v from equations (17) and (18), we get the following frequency- response equation

64wia’ (240 + (24 3a2) ju1)” + (12Xa® — 32wgoa)® = (16 + 24a> + 30a* + 350°)” F? (19)

Solving equation (19) for o, we obtain

12Xa3 + \/(16 + 2442 + 30at + 35a%)° F2 — 64 (20 + (2 + 3a2) 111)° wia? 0)
g =
32wpa

A first-order approximation for the solution of equation (6) can be derived as

y=a cos(2 —~)+ O(e). (21)
To determined the stability of the non-trivial solutions, let

a=a+a(Th) & y=v+n) (22)

where ag and 7 are solutions of equations (17) and (18), and a; and 7, are perturbations which are assumed to
be small compared with ap and 7. Substituting (22) into equations (15) and (16) and linearizing the resulting
equations, we obtain that

(21093 + p194) 3had

_ _ 23
ay 10 a1 + (—oap + Son M (23)
9\gaa2 — Sow ) 1
’ ( g2aq 093 9

= — = (2 243 24
M P (200 + (2 + 3ag) p1) m (24)
where,
g1 = 16 + 24a2 + 30ag + 35a§ , g2 = —16 — 8a3 + 10ag + 35a§ ,

g3 = —16 + 24a2 + 90ag + 175a5  and gs = —32 — 96a2 + 108ag + 440a$ + 315a8.

Seeking a solution for equations (23) and (24) in the form (a1,71) = (I'1,T'2)e?™r where I'y, Ty and 6 are
constants, one gets

2w (4091 — 21095 — p194) T1 + aogr (—3Xa + 8owg) T2 =0 (25)

(—9)\a%g2 + SUwogg) Ty 4 2wpagg: (49 + 2u0 + (2 + Sa(QJ) Ml) ', =0 (26)

For a nontrivial solution, the determinant of the coefficient matrix must vanish. We obtain this condition as

2
\/27/\2a39192 — 16wq (12/\0a(2)9195 —wo (4029193 + 9ag (gepo + dp1adgr) ))

g — dpogs + p19gs

+ 27
491 Bwogi 27)
where,
g5 = —8 + 15a4 + 354§ , g6 = 8 + 20a + 35a] ,
g7 =4+ 10a3 + Tag and gs = —32 — 96a3 — 12ad + 140a§ + 105a.

Consequently, a solution is stable if and only if the real parts of both eigenvalues (27) are less than zero.

4. Subharmonic resonance of order 1/2 (2 ~ 2wy)
For this type of oscillations resonance, one must have Q ~ 2w, to express this nearness, let

QO =2wy+ €0 (28)
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and write

(@ —wo) To = woTo + eaTy = woTo + oTh (29)
Eliminating the secular terms from the equation (12) yields

—3NA%A —iwo(poA + p A + 6 A2A+ 2A") + FA (1 +6AA+30424%) 7" =0 (30)

Using the polar form A = %a(Tl)ew(Tl) into the equation (30) and separating real and imaginary parts, we obtain
the following modulation equations:

a,__(u0+u1)a_3u1a3 (Fa 3Fa3+ 15Fa®

= L i 31
2 1 2wo | dwo | 16wo )smm (31)

" a 3ha® n Fa + 3Fa? n 15Fa® cos(7) (32)
= 0oa — —_—
i 4(4)0 wo 2(4)0 &Uo i
where v = 0Ty — 20.
For steady state solution, a’ =4’ = 0, in equations (31) and (32) we obtain
Fa 3Fa® 15Fa® 3uia®
— i = 33
(20 2+ S Y sina) = o+ ) 2 (33)
Fa 3Fa® 15Fd® 3\a®
il S = _ 34
<w0 * 2w * 8wo ) cos(7) gat 4wy (34)

Equations (33) and (34) show that there are two possibilities : (trivial solution ) at @ = 0 and ( nontrivial solution)
at a # 0. Squaring and adding (33) and (34) we get the frequency-response equation

6Awoa? = /(8 + 1202 + 1501)° F2f — 16 (2p0 + (2 + 302) ) 2

= 35
7 8w3 (35)
A first-order approximation for the solution of equation (6) can be derived as

1 1
y=a cos(iﬁt - 57) + O(e). (36)

The analysis of the stability of the trivial solutions is equivalent to the analysis of the linear solutions of equation
(30) by neglecting the non-linear terms we get

—in (/L()A + LL1A + 2A/) + eiUTl FA =0 (37)

To solve equation (37) one lets A = €271 (B (Ty) +ib(T})) where B and b are real, separates real and imaginary
parts and get

B (F + owg) + bwo (1o + 1) + 2wob’ = 0 (38)

b(—F + O‘Cdo) + Buwyg (_/J/Q — Ml) — 2(4)03/ =0 (39)
Equations (38) and (39) admit solution of the form (B,b) « (B,b)e%”t where B and b are constants then

B (F + owo) + bwo (200 + po + p1) =0 (40)

b(—F + O'wo) — Bwo (290 + Mo + ,U1) =0 (41)

the eigenvalues equation can be obtained as

b= —Ho ) 4 F? - o®wg
2 QWQ
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To analyze the nontrivial solution we followed steps similar to those in the preceding section, we obtain the
following variational equations describing the stability of the steady state solutions:

3a? (4,u0 (2 + 5a2) + 5uiad (4 + 3a2)) 1 3\a3
/ 0 0 0 0 0
= —ag | —4 43
“ 2(8 + 1242 + 15a?) C“Jrsao< R )71 (43)
3ag (A (=8 + 15a) — 8owg (2 + 5ad)) 3
r_ — Za? 44
n 2(8 + 12a2 + 15a%) wo G = (Fot it gaatn (44)

Equations (43) and (44) admit solution of the form (a,71) = (c1,c2)e?t where ¢; and ¢, are constants, provided
that

1, 2(dapg — dajir) 9a*\2dy — 12a?\odswo + 4(24a202dg + d2pd + 2dspops + dip?)ws
9 == *( i 2 2 ) (45)
4 d1 dlwo
where
di = 8 4 12a® + 15a%, dy = —8 + 15a4, ds = 8 + 24a® + 3a*, dy = —64 — 96a® + 180a% + 22548,
ds = —64 + 384a* + 720a°® + 67548, dg = 16 + 64a® + 90a* + 75a5, d7 = 8 + 24a® + 45a*,
ds = 64 + 384a® + 1440a* + 2952a°® + 3915a® + 2025a'° and dy = 8 + 24a® + 63a* + 45a°.
Consequently, a solution is stable if and only if the real parts of both eigenvalues (45) are less than zero.
5. Subharmonic resonance of order 1/3 (2 ~ 3w)
In this case, 2 ~ 3wg. Then we can write
Q = 3wy + €0 (46)
and write
(Q - 2(4)0) T() = WOTO + EO'TO = u}oTQ + O'T1 (47)
Then eliminating the secular terms from the equation (12) yields
27 - 27 / 2 (3 1, 105 5 0\ o
—3)\A A—ZWo(M0A+N1A+6M1A A+2A)—|—FA §+10AA+ 714 A et =0 (48)

Using the polar form A = 1a(T7)e?#™) into the equation (48) and separating real and imaginary parts, we obtain
the following modulation equations:

o — (po+m)a 3pra N (3Fa2 5Fa* 105Fa®

_ i 49
2 4 Swo | 8wo | 128wy )Smm (49)

9Ia? 3Fa?> 5Fa* 105Fa
"= oa — 3 50
ay =oa— gt ( Swo | 8wo | 128wy ) () (50)
where v = 0Ty — 30.
For steady state solution, a’ =+’ = 0, in equations (49) and (50) we obtain
105Fa®
(3Fa® +5Fa* + 16@ Ysin(y) = 6 prwoa® + dwoa (o + 1) (51)
105Fa®
(3Fa* + 5Fa* + 05Fa )cos(y) = 3Xa® — gawoa (52)

Equations (51) and (52) show that there are two possibilities : (trivial solution ) at @ = 0 and ( nontrivial solution)
at a # 0. Squaring and adding (51) and (52) we get the frequency-response equation

3 (48)\w0a2 + \/Fng (48a + 80a3 + 105a°)* — 1024wl ((3a2 + 2) p1 + 2u0) 2)

(53)

ag =

12802
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A first-order approximation for the solution of equation (6) can be derived as

y=a cos(%Qt - %’y) + O(e). (54)

Now, the analysis of the stability of the trivial solution is determined as in the preceding section, so we get the
eigenvalues equation obtained as

1 1.
b =—5 (ko + p1) & 5o (55)

Also, the stability of the nontrivial solution is determined similar to the preceding section and the eigenvalues
equation can be obtained as

0:

12 (po2z2 — p123) " \/27/\2a4z4 — 960 owoatzs + 4 (160226 + 576222 + 1441, 28 + Ip223) w3 (56)

821 64w3z?
where

21 = 4848002 +105a%, 29 = —16435a%, 23 = 164+48a2+5a%, 24 = —2304+16480a* +33600a8 + 3307548,
25 = 384+ 164802 +2520a* +2205a5, 25 = 7684512042 +16480a* +22400a8 + 1837548, 27 = 842042 + 354,
zg = 512 + 2944a? 4+ 9920a* + 18600a’ + 21700a® + 11025¢'° and  z9 = 64 + 208a? + 440a* + 315a°.

Consequently, a solution is stable if and only if the real parts of both eigenvalues (56) are less than zero.

6. Numerical results and discussion

This section presents numerical results in the form of frequency response curves obtained by solving the
frequency response equations (20), (35), (53) and stability conditions (27), (42), (45), (55) and (56). The numerical
results are plotted in groups of figures (2-7), (8-14) and (15-21), which represent the variation of the amplitude (a)
with the detuning parameter (o) for given values of the other parameters. In all figures, the solid lines represent
stable solutions, while the dashed lines represent unstable solutions.

Figures (2-7) represent the frequency response curves for the harmonic resonance for certain values of the
parameters. In (Fig.2) we have two semi-symmetric ovals about ¢ = 0. The lower values of a are stable solutions
and the upper values of a are unstable solutions.

e By increasing (decreasing) the coefficient of the parametric and external force F' (amplitude of the excitation)
the region of definition is decreased (increased), we have also by decreasing F' two continuous solutions lower
branch is stable and the upper branch is unstable (fig.3).

e By decreasing (increasing) the value of natural frequency wy the region of definition is decreased (increased),
also by increasing wy we have two continuous solutions lower branch is stable and the upper branch is unstable

(fig.4).
e By increasing the value of A, the symmetry is disappear and the value of unstable solution is increased (fig.5).

e By decreasing (increasing) the value of pg or p; the region of definition is decreased (increased), also by
increasing pp or pp we have two continuous solutions lower branch is stable and the upper branch is unstable
(fig.6, fig.7).

e By increasing the value of o after certain value we note that their is no changes in the magnitudes for stable
and unstable solutions for given values of 1o (i.e. there exists a saturation) (fig.6), while their exist a saturation
in the stable solutions only for given values of p; (fig.7).

Figures (8-14) represent the frequency response curves of the subharmonic resonance of order % In all figures
(8-14) the trivial solution is stable. When we consider the same values of the parameters in the harmonic resonance,
we get a continues unstable curve (Fig.8), so we consider other values of the parameters. In (Fig.9) we have two
curves, the right curve has unstable solutions while the left curve has a multi-value solutions with the upper branch
is unstable, the lower branch is stable and there exist a saddle node bifurcation.
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e By increasing F, the region of definition and the magnitudes of the solutions are decreased. When F' = 1.5
the stable solution disappears. By decreasing F', we have a one continues curve with jumping phenomenon
(fig.10).

e By increasing (decreasing) wp, the region of definition and the magnitudes of the solutions are increased
(decreased). For wg = 0.9 we have an unstable curve (fig.11).

e By increasing (decreasing) A, the region of definition, the magnitudes of the solutions and the region of
stability of the left curve are increased (decreased), while the magnitudes of the solutions of the right curve
is decreased (increased). For A = 1.0 we have two unstable curves (fig.12).

e By increasing (decreasing) g or p1 , the region of definition and the magnitudes of the solutions are increased
(decreased). As po = 2.0 or u; = 1.8, the response amplitude loses stability and we have an unstable curve
(fig.13, fig.14).

Figures (15-21) represent the frequency response curves of the subharmonic resonance of order % In all figures

(15-21) the trivial solution is stable. When we consider the same values of the parameters in the harmonic resonance,
we get a continues unstable curve (Fig.15), so we consider other values of the parameters. In (Fig.16) we have a
continues curve with region of multivalued solutions, where the middle solution is stable and the upper and the
lower solutions are unstable.

e By decreasing (increasing) F', we note that the magnitude of (a), the region of multivalued and the region
of stability are increased (decreased). As F' = 1.4, the response amplitude loses stability and we have a one
continues unstable curve (fig.17).

e By decreasing (increasing) wy, the region of multivalued and stability is increased (decreased) and the mag-
nitude of (a)is decreased (increased). When wy = 1.4, the response amplitude loses stability and the region
of multivalued is disappeared. Also, we can see that there exist intersection point at o = 0.0 (fig.18).

e By decreasing (increasing) A, the magnitude of (a) for the upper solutions and the region of multivalued and
stability are decreased (increased), but, the magnitude of (a) for the lower solutions is increased (decreased).
When A = 1.0, the response amplitude loses stability and the region of multivalued is disappeared (fig.19).

e By decreasing (increasing) o or uy , the region of multivalued and stability is increased (decreased). For
o = 1.0 or py = 0.6, the response amplitude loses stability and we have a continues unstable curve (fig.20,
fig.21).
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Fig.2: The frequency response curves of the harmonic resonance

for the parameters F' = 0.3, wo = 0.5, A = 0.1, up = 0.7 and p1 = 0.2
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Fig.3: Variation of the amplitude of the response with the

detuning parameter for increasing and decreasing F
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Fig.14: Variation of the amplitude of the response with the

detuning parameter for increasing and decreasing pi
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7. Conclusion

In this paper we studied the weakly non-linear dynamic response (micro - electro - mechanical systems (MEMS))
represented by a mathematical model with modified Duffing - Van der Pol equation subjected to weakly non-linear
parametric and forcing excitations. The study is devoted to harmonic resonance and subharmonic resonances of
orders (% and %) By using multiple scales method, for each resonance modulation equation, steady-state solutions,
frequency response equation and stability of the steady-state solution are determined. Frequency response curves
are plotted. Finally discussion for the figures is provided.

From the frequency response curves of the harmonic resonance, we observe that the response amplitude consists
of two semi-symmetric ovals about o = 0, the lower values of the amplitude (a) are stable solutions and the upper
values of the amplitude (a) are unstable solutions. By increasing F' or decreasing any of wq, ug or uy, we get the
region of definition is decreased. While, by decreasing F' or increasing any of wq, pg or p1, we get two continuous
curves, the lower curve has stable solutions and the upper curve has unstable solutions. By increasing the value of
A, the symmetry disappears and the region of stability is increased.

From the frequency response curves of the subharmonic resonance of order % we observe that the trivial solution
is stable. The non trivial solutions loses stability and the region of multivalued disappear by increasing any of wy,
1o or 1. The regions of definition are increased (decreased) when the values of the parameters wp, o or pp are
increased (decreased). When increasing F' or decreasing A we get two unstable curves. By increasing the value of
A the region of multivalued and stability is increased.

From the frequency response curves of the subharmonic resonance of order % we observe that the trivial solution
has stable solutions. The non trivial solutions loses stability and the region of multivalued disappear by decreasing
A or increasing any of F', wp, uo or pi. The regions of multivalued and stability is increased (decreased) when
the values of the parameters F', wp, 1o or u; are decreased (increased). By increasing the value of A the region of
multivalued and stability is increased.
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